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Modeling postshock evolution of large electropores
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The Smoluchowski equatiofSE), which describes the evolution of pores created by electric shocks, cannot
be applied to modeling large and long-lived pores for two reagdnst does not predict pores of radius above
20 nm without also predicting membrane ruptu®;it does not predict postshock growth of pores. This study
proposes a model in which pores are coupled by membrane tension, resulting in a nonlinear generalization of
SE. The predictions of the model are explored using examples of homogdiadiquare radiir are equaland
heterogeneous (Br=r,,,) distributions of pores. Pores in a homogeneous population either shrink to zero or
assume a stable radius corresponding to the minimum of the bilayer energy. For a heterogeneous population,
such a stable radius does not exist. All pores, excgpt, shrink to zero and,,,, grows to infinity. However,
the unbounded growth af,,,, is not physical because the number of pores per cell decreases in time and the
continuum model loses validity. When the continuum formulation is replaced by the discrete one, the model
predicts the coarsening process: all pores, excgpt, shrink to zero and,,,, assumes a stable radius. Thus,
the model with tension-coupled pores does not predict membrane rupture and the predicted postshock growth

of pores is consistent with experimental evidence.
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I. INTRODUCTION

The three terms represent energy due to steric repulsion of
lipid heads, line energy of the pore perimeter, and tension of

Since late 1970s, the physical mechanism of the creatiothe intact membrangr]. In Eq. (2), C is the steric repulsion
and evolution of pores has been described by the Smolweoefficient(from Ref.[7]), y is the edge energy of the pore

chowski equation(SE) [1-3],

=3(r). @

b Jd [ E,
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In Eqg. (1), the dependent variable i€r,t), the pore density
distribution, such that at a given tintethe number of pores
(per unit areawith radii betweerr andr +dr isn(r,t)dr. D
is the diffusion coefficient of the pore radius (5
X10 ¥ m? s 1[4]), E(r) is the pore energ is the Bolt-
zmann constant, and is the absolute temperatufd810 K,
body temperatune S(r) is a function representing creation

(1.8x10 1 J m ! [4,6]), and oy is the surface tension of
the membrane (IC° J m 2 [4]). Equation(2) and its illus-
tration in Fig. 1 are based on the continuum representation of
pore energetics, which is appropriate for large pores but is
unlikely to remain valid as the size of the pore approaches
the size of a lipid molecule.

The SE(1) has been used with success in theoretical stud-
ies of irreversible breakdown and rupture of the artificial
lipid bilayers and biological cell$8,9], as well as in the
studies of reversible electroporation with a large number of
small poreq2,4]. However, it has problems with modeling
large and long-lived pores. The pore energy of Fig. 1 predicts

and destruction of pores. It assumes that hydrophobic pores

are created at a rate that depends exponentially on the square . I .

of the transmembrane potenti®) [5,6]. Pores with radiir
=r, (Fig. 1, inset convert spontaneously to long-lived hy-

drophilic pores. Resealing occurs when the pore radius de-
creases below, : the pore reverts to the hydrophobic con-

figuration and is destroyed by lipid fluctuatiof§]. The
detailed mathematical description 8fr) can be found in
Ref.[7]; it is not important for the present study.

SE predicts that the pore radius, while subject to some
thermal fluctuations, will expand or contract to minimize the

pore energyFig. 1). For hydrophilic pores with=r, and in
the absence of an externally inducédthe pore energy is:

C 4
E(r)=<T) +y27r — oot 2. ()
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FIG. 1. (a) EnergyE of a pore as a function of its radius at the
transmembrane potenti®l=0. The radiir, andrq indicate posi-
tions of energy barriers for creation of hydrophilic pores and for
rupture of the membrane, respectively, is the position of a local
energy minimum. Inset: fullsolid line) and simplified(dashed ling
pore energies.

1063-651X/2003/6(@2)/021915%12)/$20.00 67 021915-1 ©2003 The American Physical Society



J. C. NEU AND W. KRASSOWSKA PHYSICAL REVIEW E67, 021915 (2003

two possible scenarios for the postshock evolution of poreto millisecond$. The process of creating pores by an external
created by a short electric pulse. After the pulse is turned offpotential V will be represented by assuming an initial pore
pores with radii belowr 4 will shrink to the radius near the density distributiom(r,t=0).
minimum energy radius,,~0.8 nm. Pores with radii above ~ Second, since this study considers pores with very large
rq will expand without bounds, leading to the irreversible radii, the steric repulsion of lipid heads is negligible and the
breakdown and membrane rupture. Both processes happdfst term of pore energy?2), (C/r)*, does not have to be
very fast[4,9], so that measurements taken a few microseceXp“C'ﬂ_y considered. This term creates an energy _barrlle_:r at
onds after the pulse should reveal either the presence &f » Which slows down resealing of pores; in the simplified
many pores with radii below 1 nm or the cell should be Version, Fr_ns barrier will be r_epre_sented by a no-flux bound-
destroyed. However, experiments often document pores witAry condition air =0. Approximation ofr,. by zero follows
diameters up to micrometers, which can persist without rupfrom the scaling appropriate for large poréstroduced in
turing the membrane for tens of milliseconds to seconds$>€c. Il A), in which radii on the order of, are asymptoti-
[10,11]. Another feature not seen in the model is the post<cally equal to zero. _
shock growth of pores and the stabilization of their radii at Under these assumptions, the G becomes
20—-60 nm[12]. To our knowledge, no in-depth explanation
of this discrepancy between predictions of the SE and experi- o i 2_77(
mental results has been presented. t ar \ kT
Our study addresses this problem by reexamining the en-
ergy cost of the creation and expansion of pores. The originakhere 27(y— or) is ther derivative of the simplified pore
formulation of the energy functiof®) assumes that pores are energy. This energy is shown as a dashed line in the inset to
independent: their energy depends only on their rH8i.  Fig. 1. This figure demonstrates that the simplification affects
(2)]. However, in reality pores are not independent: they arenly small radii and the energy of large pores is unchanged.
coupled through the tension of the membrane. The creation
of many pores and/or their expansion relieves the membrane
tension. As seen in E@2), the decrease iy would increase
the energy cost of creating new pores or expanding existing
ones, potentially halting further growth of the pores. A. Energy of a bilayer and effective surface tension

A similar coupling between membrane tension and the Consider a lipid bilayer of ared, which consists of B

pore area has bee_n propo_se_d befﬁtml,13—15. In _these lipid molecules. The interfacial energy per molecyls, is
studies, the analysis was limited to either one giant pore,

with the radius on the order of micrometdrkl,15 or to a u=oc'a+K/a, 4

population of pores with identical radii3]. Neither of these

cases represents conditions occurring during electroporatiofghere ¢’ is the interfacial energy per area of the

mediated drug or DNA delivery experiment. The present pahydrocarbon-water interface (2003 Jm 2 [16]), a

per fills this gap. _ =A/M is the area per lipid head, ardlis a constanf16].
When electroporation is used for drug or DNA delivery, The two terms in Eq(4) give rise to attractive and repulsive

the cells are exposed to an electric pulse, or a train of pulsegyrces, which balance at the optimal area per lipid hegd,

which creates a heterogeneous population of pores with radii JKTo". Restating Eq(4) in terms ofa, yields
ranging from zero to tens of nanometers. After the pulsation,

y—oor)n+n, =0, ()

II. THEORY OF ELECTROPORATION WITH
TENSION-COUPLED PORES

the cells are usually allowed to reseal and are not subject to 22
any additional manipulations. This is in contrast to several u=c'al 1+ o (5)
experimental studie§10,11,19, which used mechanical a’

means to keep the membrane tension constant in order to

elucidate the mechanisms of the pore evolution. However, The energy of the RI-molecule bilayer\, is obtained as
this is an artificial situation: in practical applications, the a sum of the energies of its molecules,

change of pore radii following the pulsation is accompanied

by the change in membrane tension. The present paper con- A2
centrates on the coupling of these two processes, so it fo- W=2Mu=20'A 142 ' (6)
cuses on the behavior of pores in cells that are “left alone” A?

after pulsation, as it is usually done in drug and gene deliv-

ery applications. where A,=Ma, is the optimal area of the M-molecule
The derivation of the theory of tension-coupled pores ishilayer. ForA=A,, dW/JA is positive and the membrane is

presented here under two simplifying assumptions. First, iunder tension.

order to focus on the postshock evolution of large pores, this Expression(6) applies to an intact membrane. The pres-

study will ignore the influence of the externally imposed ence of pores has a twofold effect: it decreadéby reduc-

potential V. Hence, the functiors(r) in SE (1) will be set  ing the area subject to interfacial tension, and it incre&ges

equal to zero, since no creation of pores occurs in the alBy introducing line energy of the pore perimeterAlf is the

sence oV and the resealing of pores takes much longer timecombined area of pores ahg is the combined pore perim-

(secondsthan the time scale considered hémacroseconds eter, then the bilayer energy is

021915-2
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A * 2
W= 9L 420" (A—A,)| 1+————|. 7 Ap:Af wren(r,tydr. (13
Yhp ( p) (A—Ap)2 (7) 0

o ) o ~ Due to the functional dependence @f¢; uponn(r,t), Eq.
The above expression is the basis for estimating the effectivel2) is a nonlinear integro-differential equati¢NIDE) for
surface tension of a bilayer, defined as the derivative of enn(r t).
ergy with respect to bilayer are® In Eq. (7), regardA, as As stated in the Introduction, there is a no-flux boundary
an independent variable aidas a fixed constant. If the pore condition atr=0, which means that loss of pores due to

area changes by amoudf,, the total bilayer are#&—A, resealing is negligible. From E@l2), the rate of change of
changes by amount 6A;,. Hence, the effective surface ten- total pore number is

Sion o4y IS
J ©
_(Aj n(r,t)dr)=—Af(0,t), (14)
A) w_ ,(1 2 at\ "o
Oeff =——=20"|1-——
o g (A=Ap)? where
(1-A,/A)? (r)==D| F[y=oer(Aprintn, (15)

In Eq. (8), oy denotes the surface tension of the intact mem.S the flux ass_(_)maf[ed with the NIDEL2). The no-flux
’ - boundary condition is therefore
brane withA,=0,

f(0t)=0. (16)

2
ao=2g'( 1— A—Z) (9) The description of pore statistidd2), (8) is a heuristi-
A cally formulated mean field theory, analogous to other clas-
sical mean field theories, such as the Deby&kdlitheory of
A value of o, used in the literature, 1 mJ T, requires electrolytes[17]. In the Appendix, the thermodynamic free
only a small fractional change in membrane area: (1€nergy of a bilayer with tension-coupled pores is formulated
—Ao/A)=0.0126. as a functional ofh, and it is shown that this free energy
Returning to the energy of a bilayer: using definition of decreases in time fau(r,t) that satisfy the NIDE12).
oo (9), Eq. (7) can be rewritten as
C. Special case: Homogeneous population of tension-coupled
2 pores

W=yLy+20" (A=Ap) + (20" = 0ay) (10) A homogeneous population of pores, all with the same
radius, is not likely to appear in practice. Nevertheless, it
) ) ] serves as an intuitive illustration of the formula for the bi-
This energy can be normalized by subtracting the energy ghyer energy(11) and as a preliminary analysis leading to the
the intact membrane, so thét is zero forA,=0, simplified equations governing the evolution of pores.
For a homogeneous population of pores, the pore density

distributionn(r,t) is

A=A,

!
20" — oy

W= ’pr—(Z(r'—m>Ap_ (11)

n(r,t)=N&(r—ryg), (17)

where § is the Dirac’s functionry=r(t) is the radius of

pores, andN= [n(r,t)dr is pore density. The area of pores
Each pore in the entire population “feels” the effective is evaluated from Eq(13),

surface tensionrs in place ofog. This observation moti-

vates a heuristic description of pore statistics: The pore Ap=A7rNr(2), (18

population is still described by an equation like the Smolu-

chowski equatior(3) but the constant surface tensiog is  and the effective surface tension is computed fi@nas

replaced byogss:

B. Mean field theory of pore statistics

!
20" =0y

pr2 (19

d (2w _ Oeti=20"
nt_DE ﬁ['y_o'eff(Ap)r]n"—nr =0. (12

The energy of the bilayer with the homogeneous pores can
In Eq. (12), the effective tensiowr;; depends o, , which  be computed from Eq11). Evaluating the combined perim-
in turn depends on the pore density distributig(m,t): eter of pores,

021915-3



J. C. NEU AND W. KRASSOWSKA PHYSICAL REVIEW E67, 021915 (2003

_ (b)

o

gsooo — 77— T
|- 2.5_1 =
~ o L = 4
b )

Ezooo 52_0

S pd

~ >

< =

S 1000 %

o> <~

> o

S 0 g

bl

>

3

re)

pore radius r, (nm) pore radius r, (nm)

FIG. 2. Homogeneous population of porés.Bilayer energy per area as a function of pore radiisv/alues ofN are indicated by labels.
(b) Diagram showing regions of growthight arrow) and shrinkagéleft arrows of pores as a function of initial radiug and pore density
N. N, is the critical pore density,. is the inflection poinfdiamond, r 4 is the position of the barrier for the spontaneous expansion of pores,
andr is the stable radius. To obtain the diagram(b), maxima and minima of quartic curvgshown in(a) as filled circles onN
=1 um2 plot] were computed by differentiating the right-hand side of E9), setting it to zero, and solving the resulting third-order
equation.

_ * _ 2 al
Lp—AfO 2arn(r,t)dr=A2mNrg, (20 NC:F , 0 2~1.87 wm-2, (23)
T (20" —09)y

the bilayer energy per area takes the form _ ) ) ) ) )
for which W has a horizontal inflexion point at radius

!
20" — 0y

2

wNr2. (21
1-aNr2) O 3

Y
rc—50—0~27 nm. (24

W !
K=2777N ro—| 20’ —

Expanding 1/(+ rig) in Taylor’s series, the bilayer en-
ergy becomes a quartic polynomial iig, The diagram in Fig. @) summarizes the different sce-
narios described above. The positions of the maximugh (
and the minimum i(s) of W, plotted on the 1,,N) plane,
K“2777’\”0—WUoNrgJF(ZU'—Uo)(WN)ng, (22 show all combinations of the initial radiug and pore den-
sity N that result in shrinkage of pores to zefleft of rg

. L ) . curve or aboveN,;) versus setting down to a stable radiys
in which linear and quartic terms are positive, so they CauSEight of r 4 curve.

shrinking of pores, and the quadratic term is negative, SO it "The actual process of shrinkage or growth of pores in a
causes expansion of pores. , heterogeneous population is governed by the NIQB),
Figure 28) shows the bilayer energ2) as a function of  yhich can be solved numerically, but at a fairly large com-
ro for several values of pore density This figure suggests ptational cost. For example, to obtain accurate numerical
two different scenarios. When the electric shock creates g|ytions to the SE1), Joshi and Schoenbach used spatial
sufficiently large number of poreN(-N), W is @ mono-  and temporal discretization steps of 5 pm and 1 ps, respec-
tonically increasing function of,. Physically, it means that tively [9]. Our study uses an alternative approach: an
so many pores are created that not enough tension is left ié.‘symptotic analysis of the NIDE shows that it can be re-
the membrane to cause pore expansion. Hence, all pores Wij,ced to ordinary differential equatiof@DES. The follow-
shrink to zero. When the electric shock creates a small numpq section presents a derivation of these ODEs for an arbi-
ber of pores I <N¢), Whas two energy minima, at zero and trary population of pores and afterwards we will finish the

pores, with initial radius y<<r 4, will shrink to zero and large

pores, with initial radius o>r 4, will either expand or shrink

until they achieve radiusg. This radius is stable: once the Ill. EVOLUTION OF PORES

pores reachi, their size remains unchanged until some ex- _ _ i _

ternal event, such as the change in cell volume through leak- A. Approximate solution of the mean field equation(12)
age, disturbs the equilibrium. These two cases are separated The first step in the analysis is converting NIDE?) to
by the “critical” pore density dimensionless form using the following system of units:

021915-4
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Variable: r t n Oeff W/A

Unit: r 3 KT Ne Nr

' ¢ 47 Doy le 70 Yiele
Value:  27nm 20.4s 69.2um3 10°3Jm 2 212kTum 2. (25)

|
The dimensionless form of NIDEL?) is <fmax. This interval is divided intoK subintervals and

P 3 n(r,0) represented by pairg(0),n;(0), i=1,2,... K+1.
n— — (1_ S Teri(Apr [n+en, |=0, (26)  Thus,A, att=0 is evaluated using the trapezoidal r{d€)],
ar 2 and o att=0 is computed from Eq(8). Now, r; andn;

are advanced in time by solving+ 1 pairs of ODEs, Egs.
(31) and(32). Using newr; andn;, o.¢s can be updated and
the process repeated in each time step.

Solutions to Egs(31) and (32) can be obtained using

KT o standard numerical techniques. This paper uses an implicit
= (27) midpoint method with Newton-Ralphson iteration in each
time step[19]. The time step needed for a convergent and
accurate solution is only 0.4s, which is five orders of mag-

For typical values ofro, y, and at the body temperatu, iy de larger than the time step used for the direct solution of
has a small value of approximately 0.0015. This indicate§ne smoluchowski equation 9],

that the diffusion term in Eq(26) is at least two orders of

magnitude smaller than others and can be neglected. Hence,

NIDE (26) reduces to a first-order equation, B. Special case: Homogeneous population of tension-coupled
pores

whereA, and o; are dimensionless counterparts of quan-
tities defined by Eq(13) and Eq.(8), respectively. The pa-
rametere appearing in Eq(26) is defined as

8—5?.

J
ar

3
n; 1—§aeff(Ap)r)n =0. (28 Applying the results of Sec. IIl A to a homogeneous
population of poresn(r,t)=N&(r —rg), gives an ODE gov-
This equation can be further transformed using theerning the time evolution of the radius of all poresgt),
method of characteristi¢4.8]. This procedure leads to ODEs dr 2D
governing the time evolution of pore radii and pore density d_tO: — WU_ Teti(ro,N)o], (33
distribution. Specifically, the radiug of theith pore in the

whole population of pores evolves according to the ODE:

dr; 3 whereaog¢(rg,N) is given by Eq.(19).
T —(1— Egeff(Ap)ri)- (29 Figure 3 illustrates the time evolution of pores for three
values of pore densiti and three initial radii. In agreement
The value of the pore density distribution, which is seen aWith predictions of the bilayer energy of Fig(& and the
time t and radiusr;, is denoted byn(t)=n(r;(t),t) and diagram of Fig. 2), N>N, always results in pores shrink-

evolves according to the ODE- ing to zero, whileN<N. may lead either to shrinkage to zero
dn 3 150
O 2 (AN (30 R
dat 2 — N=1pm” I .
Returning to dimensional variables, Eq89) and (30) take 7 100F ;.3 I i
the form Y " '
® - 'l| ]
dr, 2D £ sof ¥ 7
Gt kT Ly oerdAril, (31) i \ ]
dny 2D T w e 80
Tt kT Cer(Apni, (32
pore radius r, (nm)
whereo ¢ is given by Eq(8). Note thato ¢ is a function of FIG. 3. Homogeneous population of pores, time evolution of

time through its dependence dk, and, consequently, on pore radiusr(t). Solid, dashed, and dotted lines correspond to
n(r,t). This dependence can be incorporated in calculationgree pore densitiedegend: N=1 and 1.3um" 2 (belowN,), and

as follows. Let us assume that known initial pore density3 ;m~2 (aboveN,). Each pore density was tested for three initial
distribution n(r,0) is specified on a finite interval,;,<r radii: ro(0)= 15 nm(belowr.), and 30 and 70 nnfabover.).
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FIG. 4. Heterogeneous population of pores, time evolution of a uniform distribution with initial radi{ @)<25 nm and pore density
N=1 um 2. (a) Pore density distributiom(r,t) plotted as a function of radius at six instants of timet=0,1Q ...,50us. (b) Time
evolution of 25 representative radii(0)=1,2, ..., 25 nm(c) The density of pores with nonzero radilj- o (solid line) and the effective
membrane tensiomr.¢; (dashed ling plotted as a function of timeld) Time evolution of six large radiir;(0)=24.9,24.92. ..,25 nm,
followed for longer time interval, &t<6 ms.

or to stabilization of pores at radiug. The time scale of this Figure 4 illustrates a typical time evolution of a uniform
process is on the order of microseconds, as is the time unitistribution of pores. This example assungg,,=25 nm
used for scaling25). andN=1 um~2. As seen in Fig. &), n(r,t) remains uni-
form in r at all times. This is a consequence of advection
IV EXAMPLE: UNIEORM DISTRIBUTION OF PORES velocity in NIDE (12) being a linear function of. With the
linear velocity, the distribution will change its range and
A. Continuum formulation magnitude, but it will retain its original shape. Figuréoy

A homogeneous population of pores, analyzed aboveShows the evolution of 25 representative pores. Pores with
may not appear in real-life situations. Hence, the next ex!i(0)<<20 nm shrink from the very onset of the simulation.
ample recognizes that the shock creates a heterogeneofi§ the radii of these pores become zetbe density of pores
population of pores, with radii ranging from zero to someWith nonzero radiusN, -, steadily decreasefFig. 4(c),
valuer 4. For simplicity, the pore density distribution at solid line] and less pores are available to relieve membrane

time t=0 is assumed uniform, tension. However, the growth of larger pores compensates
for the decrease ifN,~, and o.s; decreasedFig. 4(c),
N/Tmaxs  OTI<r ax dashed ling This is an example of a general phenomenon,
n(r,0=1 o, F>T (34  the “coarsening”[20], which has been observed in other
physical systems such as solid crystals nucleating from lig-
uid solution.

whereN is the pore density. This distribution is represented The long-time behavior of the uniform pore distribution is

by pairsr;(0),n;(0),i=1,2,... K+1, whereK+1 is cho-  shown in Fig. 4d), which follows evolution of six very large
sen so that at=0, adjacent radii are separated by at least 0.1

nm. The time evolution of paing(t),n;(t) is computed from
ODEs (31) (32, with A, evaluated numerically from Eq. IMore precisely, pore radii becom®(s), so that the no-flux
(13) and o5 from Eq. (8). boundary condition at=0 is preservedsee Sec. V B
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(a) (b) o Tmaf0)=25nm

bilayer energy W/A (units of kT pm_z)
o
o

0 20 40 60 80 100 120

pore radius r___ (nm)

FIG. 5. (a) Bilayer energy per area plotted as a function of the maximum radjys of the uniform distribution. Pore density
=1 um 2. (b) Bilayer energy per area plotted as a function of the maximum ragijys and the pore densitiN. The line shows the
trajectoryr o (t) that starts at 25 nm.

pores, with initial radii from 24.9 to 25 nm. This figure Fig. 4, the initial pore densityN\=1 wm™ 2, corresponds to
shows that all pores with radii<r ., eventually shrink to 1256 pores per cell. However, for the final time shown in
zero. This result can be intuitively explained as follows. Be-Fig. 4(d), 6 ms,N=0.7x 102 wm2, which corresponds to
cause smaller pores keep shrinking to zero and the distribsnly 0.89 pores. For a fractional number of pores per cell,
tion must remain uniform, coarsening continues: even largethe behavior of the continuum model no longer reflects real-

pores, which initially grow, must eventually turn around andity. Hence, the following section will reexamine the same
start shrinking. This is the ultimate fate of all pores exceptproblem using a discrete formulation.

Ir'max, Which must continue to grow, in order to prevent the

increase in membrane tension. Asymptotically, the growth of B. Discrete formulation
I max DECOMES linear, with the slopgl ,,,,/dt— 7yD/KT as , ) ,
t— oo Let us consider a heterogeneous population of pores with

The scenario illustrated in Fig. 4 is qualitatively different the initial pore densit. For a spherical cell of radiug, the
from the behavior of the homogeneous pore populatisg. ~ Number of pores is
3). The most important difference is the absence of stable _ _ 2
pores with radii of tens of nanometers. Based on the bilayer K=AceiN=4RN. 39
energy plotted as a function of,,« [Fig. 5a)], one would  This example assumes thattatO pore radii are distributed
expectr may to reach the stable radius corresponding to theyniformly between zero and,
energy minimum. However, one must take into account that
as rmax Moves towards this minimum-energy radius, the ri=irmadK, 1=1,2,...K. (36
smallest pores shrink to zefBig. 4(b)] and the pore density
N effectively changes$Fig. 4(c)]. Hence, in the case of a The time evolution of each radiusis governed by the ODE
heterogeneous pore distribution, the bilayer enaigynust  (31). Effective tensiono; is computed from Eq(8) and the
be considered a functions of botlhy,,, and N. Figure §b)  bilayer energyis computed from E¢(11). In these expres-
shows this function as a surface in the three-dimensionasions,A, andL, are computed by summing areas and cir-
space: note that the energy minimumtat0, shown in Fig. cumferences of all pores,
5(a), is a part of a “valley” that becomes deeper Hs-0 K K
andr ,,,—0. The trajectory overlaid on this surface shows _ 2 _
that r ,,(t) eventually follows the bottom of this valley, Ap_z& i Lp_z& 2, (37)
minimizing the bilayer energy.

Once one accepts the correctness of the results shown andA is the cell ared ¢, computed as in Eq.35).
Fig. 4, the implication is that the model with tension-coupled Figure 6 is the counterpart of Fig(d) for the discrete
pores cannot predict large and stable pores. Contrary to thmodel. The pore density=1 xm~2, and the initial radii of
results for a homogeneous pore populatigilg. 3), in a  the six pores, 24.9 to 25 nm, are the same as shown in Fig.
more general case of a heterogeneous pore population, tHéd). At t=0, a cell of radiusR=10 um is assumed to have
relief of membrane tension by pores does not prevent th&256 uniformly distributed pores; the figure shows the time
largest pore from unbounded growth and rupturing the memevolution of the six largest pores, 1251-1256. Five of these
brane. pores, with radiir <r ., shrink to zero; smaller porgsot

This conclusion is too hasty because it does not take intghown shrink even faster, just as they did in the continuum
account the limitations of the continuum approximation. Letmodel. However, the largest pore, .y, grows to a stable
us consider a cell of radius 1@m. In the example shown in radiusrg. Note the time scale of the process: it takes almost
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zero, the last pore disappears and the energy sharply in-
creases to a value corresponding to that of an intact mem-
brane. There is no such natural termination in a continuum
model, sor ., Can increase without bounds. However, the
increase off 5, predicted by the continuum model has no
physical significance.

V. DISCUSSION

0.0 035 10 1.5 20 25 A. Difference between the Smoluchowski equatio(3)

pore radius (um) and the mean field equation(12)

FIG. 6. Time evolution of a uniform distribution of pores ina  This study proposes a model in which the behaviors of
discrete model. At time¢=0, there are 1256 pores with radii 0 individual pores are not independent: the pores are coupled
<r;(0)<25 nm. Shown here is the time evolution of the six largestby the tension of the membrane. This model can be consid-
pores,ri(0)=24.9,24.92. ..,25 nm(solid lineg; the same as in ered a nonlinear extension of the Smoluchowski equation
Fig. 4(d). The heavy line shows the evolutionmf,, of the discrete  used in the literature to describe the behavior of uncoupled
model; the dashed line shows the evolutionrgf,, of the con-  pores[1-3]. The purpose of this part of the discussion is to
tinuum model[from Fig. 4d)]. preempt misunderstandings invited by formal resemblance of

NIDE (12) to SE(3).
4.5 ms forr ., to reach its stable radius. Also note the large  First, consider the ensemble of uncoupled pores with the
final size ofrg, 2.234,m, which is over 20% of cell radius. single pore energy
The same value is obtained by computing from BEq) the
position of the bilayer energy minimum. Note thatraf the
tension of the membrane is not zeroo;=8.1
x10°® Jm 2, or 0.81% ofoy. This smallo.¢s is needed to
balance the force exerted by line energy.

The reason why the largest pore in the discrete model B
settles at a stable radius is illustrated in Fig. 7. This figure WO:AJ E(r)ndr=yL,— oA, . (39)
shows the bilayer energy as a functionrgf,, andN [con- 0
tinuum model, Fig. 7@] andr . and K [discrete model,

Fig. 7(b)]. These two surfaces are drawn for the case whefNow consider the system of tension-coupled pores. Its inter-
there are very few pores per cefl:varies between 1 and 12. nal energy is equal to the bilayer energydefined by Eq.

In the continuum caséy can assume any real number, so the(11). Note thatW in Eqg. (11) is not equal taV, in Eq. (39)
energy surface is smooth. In the discrete cdsessumes with o replaced by because the expression in parenthe-
only integer values, so the energy surface decreases #es is not equal too¢; defined by Eq(8): in Eq. (8), term
clearly visible steps. There also is a natural termination o{1—A,/A) is squared. This difference arises from the fact
the discrete energy surface l§=1. WhenK decreases to that as pores are successively created, their energy cost de-

E(r)=2myr—mwol?. (39

The internal energy of this systettbilayer energy”) is the
combined energy of all pores:

(a) (b)

0)‘94- ({( 0‘@ 6‘?/ @
% N

FIG. 7. Bilayer energy per area of a continuum and a discrete model. Shown are parts of the energy surface that correspond to a small
number of pores per cella) Continuum model: the energy is plotted as a function of the maximum ragliysand the pore densiti. (b)
Discrete model: the energy is plotted as a function of the maximum ragliysind the number of pord&. Lines indicate trajectoriag, ,,(t)
that start at 25 nm, arrows indicate the direction of movement. Note the opposite orientation of these plots from the surface shown in Fig.
5(b).

021915-8



MODELING POSTSHOCK EVOLUTION OF LARGE . .. PHYSICAL REVIEW E 67, 021915 (2003

pends on previously created pores. Thus, in a system withepresentation of pore energy has limited validity for small
tension-coupled pores, the internal enewyys not the sum pores. The main point is that there is a large concentration of

of individual pore energies. pores that have collapsed to a radiusO(e) and the pore
conservation is upheld. However, as mentioned above, pores
B. Simplifying assumptions and future work that small have negligible influence on membrane tension

The model presented here contains several simplifyin ase-md can be ignored.
P plitying The coarsening process studied here is driven by changes

sumptions. Eirst, .the ”?Ode' simplifies .the shape Of th(? POT, membrane tension induced by replacing the lipid bilayer
energy functior(Fig. 1, inset by neglecting the contribution by water-filled pores. An alternative mechanism of the coars-

of steric repulsion. Consequently, in the model pores shrinlé : . P
. L ) ’ . "ening process is the decrease in line energy caused by the
to zero radius, while in reality they accumulate at the radius ng p 5S | nl gy cau y

t 208 hich ds 1o the local - ~“toalescence of the adjacent pof@g€]. This mechanism is

or ~8.6 nm, which corresponds o the loca en.ergy MIN b6t included in the present model because of the relatively
mum. Thls S|mpI|f|c§1t|on IS Of no consequence, the SaMm§qyy pore densities considered here: the inithi=1 wm?
qualitative resul'ts will bg obtained if the bilayer energy in- corresponds to the interpore distance of approximately
cluqles the steric repulsion term. The presence of 0.8 n pm, which is much larger than the initial pore radii, 0-25
radius pores has only a small effect on membrane tension, . Since the number of pores decreases with tiFig. 4)
the quantitative effect on the result is expected to be negli'Ehe.coalescence of adjacent pores would be rare aﬁd 'would
gible.

; . S have only a small effect on the results.
L|kevy|§e, S|mpllfy|ng NIDEQZ) .to ODEs for th(f" purpose Neglecting the effect of the transmembrane potentia
of obtaining numerical solution is of no practical conse-

S . f more consequence. The examples presented here assume
g#feur;?c?n ZPI;;Sorsén:gg?icisfiEhnvig{igt?etshuﬁt ??]e;rgﬁg%t'nmdoudci_edgrbitrary and idealized initial distributions of pore density
fication of the pore dénsity functian(r 1). The length scale n(r,0) and concentrate on the postshock evolution. This was

e — . e done to maintain the clarity of presentation. The processes
qf _the d|ﬁ‘u3|o_n,LDoc DTo, w_hereD is the d|f_fu3|on cgef- related to potential/, such as charging the membrane by an
ficient andTy, is the relevant time scal@1]. Using the time

. ; C external electric shock and the creation of pores, proceed
unit from scaling table(25) as Ty, Lp~1 nm, which is P P

h ler th he | h e f with similar time constants as the evolution of pore radii.
much smaller than 27 nm, the length scale from tdB®.  \yith )| these processes happening at the same time, the

Hence, the diffusion is expected to introduce only a small ohiem becomes intrinsically “messy.” Nevertheless, the
quantitative change for>1 nm. For example, in the uni- oroniem in which creation and evolution of pores are
form distribution of Fig. 4a), sharp edge atya, would be o njed tov is of practical interest and will be addressed in
blurred. ) e future work.

. However, neglecting diffusion creates an appearance of another unphysiological assumption is that the volume of
inconsistency in the model: the number of finite-size ( e cell remains constant. In reality, creation of pores of the
>0) pores decreasing with tini€ig. 4(c)] conflicts with the  gj;¢ investigated here leads to the leakage of cellular content.
no-flux boundary conditiori16) atr=0, which ensures the Thjs process aids in the decrease of membrane tension, pos-
conservation of pores. This is an artifact of the reducediyy modifying later stages of pore evolution. Thus, another
NIDE (28), which is not sufficient to resolve a boundary eytension of the present model should be the addition of
layer of thicknesg: atr=0, where diffusion matters. Given changes in cell volume. The coupling of the pore evolution
a solutionn(r,t) of the reduced equatiof28), a uniformly  ith the change of cell volume has been proposed before,

valid approximation to a solution of the full NIDE26) is  ajthough in the case of only one pore presrit,15.
given by

No(t)

Niun =~ e—r/s+n(r,t)_ (40) C. Comparison with experimental results

Numerical simulations of the original Smoluchowski
Here,N(t) is a function of time, independent of The first 9quation(1) reveal t_hat pores increase their radius very rap-
term on the right-hand side dominates faof magnitudes, !dly when the electrlc_ shock is present. As soon as the shqg:k
and represents a high density of pores whose radii have cd turned off, pores either shrink to zero or, if pores with radii
lapsed to magnitude. Based on Eq40), the approximation 2P0ve 20 nm have been created, they expand without

to the total pore density is bounds, leading to the rupture of the membrgA@®]. The
predicted time scale of these processes is on the order of a
N=~Ng+N,~q, (41)  fraction of a microsecond. Postshock growth of pores to radii

on the order of tens of nanometers, lasting for milliseconds
whereN;, - o= [gn(r,t)dr can be thought of as the density of and followed by their shrinkage and resealing, has not been
pores withr>e and No as the density of pores with  seen in simulations.
=0(e). Given N,-( from a solution of reduced equation  Thus, the original SE cannot explain the study of Chang
(28), Ng=N—N,~o. The actual structure of the boundary and Reese, who used rapid-freezing electron microscopy to
layer atr =0 is not important, since NIDE26) is already visualize the evolution of pores in red blood cdli®]. The
based on a simplified pore energy valid only for pores sig+esolution of the method allowed the pores to be first seen
nificantly larger than 1 nm and, moreover, the continuumapproximately 3 ms after the shock, when their radii were
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The model predicts the postshock growth of pores, the time
scale is on the order of milliseconds, the pore radii are teNS, bbENDIX: MEAN FIELD THEORY AND EREE ENERGY
of_nanometers and Iarg_er, a_n_d the membrane d0e§ not rupture OF TENSION-COUPLED PORES

(Fig. 6). However, the simplifications of our model introduce

several quantitative differences. First, the pore radii stabilize The purpose of this appendix is to make a connection
after 4 ms in the mode(Fig. 6), and after 40 ms in the between the energetics of the system of tension-coupled
experiment. This difference is most likely due to model pa-Pores and the mean field NIDE?2). In particular, it will be
rameters corresponding roughly to planar lipid bilayers, noghown that the free energy

to red blood cells. It is also possible that the later growth of FoW-Ts (A1)
pores was caused by the swelling of cells, which is not rep-

resented in the model. Second, Chang and Reese did not gy, the internal energyV as in Eq.(7), is nonincreasing in

a coarsening process leading to the presence of only ongne forn(r,t) that satisfy the NIDE12). The association of
pore. This difference can be explained by the existence of § free energy with the kinetics of a mean field theory was
network of cytoskeletal proteins in red blood cells. The ten-first worked out by Bonillaet al. [24].

sion coupling between pores would be limited only to pores The argument uses the dimensionless quantities, ex-
in the same opening of the network, so the coarsening propressed in units from the scaling takl25). Also, in this
cess would lead to one pore per opening, instead of one poegpendix,F, W, and S represent energies and entropy per
per cell. Finally, the largest pore observed in the modelarea, rather than those of the entire bilayer. Hence, the di-
2.234 um, is larger than the pores in the experiment, 60 nmmensionless free energy per area is

This difference is easily explained: since many pores contrib-

ute to the relieving membrane tension, the radii of the indi- F=W-¢S, (A2)
vidual pores can be smaller. Smaller radii were predicted b
the model for the homogeneous distribution of pdifeigs. 2
and 3. o
To see that the coarsening process indeed leads to one S=—27rf nin(n)dr. (A3)
pore, one needs to examine experiments performed on lipo- 0

some yesicles, which do n_ot have cytoskeletal netyvork%.he small parameter, defined in Eq(27), is proportional to
Such liposomes, 25-5m in diameter, were used in @ yomnerature, so EGA2) amounts to the standard definition
study of Zhelev and Needhaff0]. Pores were induced by & f free energy in thermodynamig&5]. The internal energy

150 s, 0.63-1.26 kVcm*® electric shock. Based on a i evaluated as follows. From EG), the bilayer energy
study of Hibinoet al.[23], such a shock should create a large per area can be written as

number of pores, concentrated in the parts of the liposome

\//vhereSis the dimensionless entropy per area,

2

membrane facing the electrodes. Yet, when the liposome was Lp -A, Al
examined several milliseconds after the shock, only one W=y 20— A (A4)
pore, with the radius of approximately Am, was present. (A=Ap)
Hence, this experiment indicates that the coarsening proce ; ; - ;
oredicted by the modeFig. 6 may be taking place. ?\Sence, the dimensionless internal energy is
Another confirmation comes from the experiment of San- . 1
dre et al, performed on stretched liposome vesid&s]. In W:f 2arndr+ 20" (A—A))
this study, the viscosity of the solvent was increased in order 0 YN A
to slow down the rate of leakage from the cell. Hence, in the 2
slow leakage limit, this experiment approximates the con- x(1+ Ad (A5)
stant cell volume situation assumed by our model. Images (A—Ap)2 '

collected several times per second revealed the presence of

only one pore. Sandret al. observed the stabilization of this where dimensionless, Ay, andA, are measured in units of
pore at a radius up to 1@m; afterwards, the leakage rE.

through the pore took over and led to the decrease of cell Now compute the time rate of change fef

volume, shrinkage of the pore, and its resealing. These com- . i

parisons between theory and experiments give us a reason to F=W-e&S, (AB)
believe that, despite its simplifying assumption, the model . _

with tension-coupled pores can be useful in theoretical studwhereW and S are obtained by differentiatingy/ and S in
ies of the postshock evolution of pores. (A5) and(A3), respectively. First compute
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= - "(A— e=—r+ —0oeii(Ap)rc—elIn(n). (A11)
w fo 277mtdr+chrcA oA, 20" (A—=A,) 4 et Ap
2 From the mean field equatiof26), n, can be expressed in
Aj aA
"9 J|=R terms of flux,
(A—Ap)z at

I’]t: _fr I} (Alz)

3 2
r— ZUeff(Ap)r

=2wJ
0

where the derivativel/ A, of the expression in brackets is
recognized as equal to dimensionless;; times (—oy).
Next, from Eq.(A3),

ndr, (A7) where

3
f:—(l—ifreff(Ap)r)n—anr in r=0 (A13)

is the dimensionless version of flud5). Substituting Eq.
(A12) into Eqg.(A10) and performing integration by parts

S= —27rf [In(n)+1]ndr= —zwf In(n)ndr.
0 0 o o
(A8) Fzzwf <pfrdr=2w[<pf]g°—2wf o fdr. (A14)
0 0
The last equality in Eq(A8) is due to effective conservation
of pores, Using no-flux boundary conditiofil6) and assuming thait
—0 asr—, the boundary terms in E¢A14) disappear. In

d f“ the integral,

T ndr=0, (A9)

0
3 n f
which ignores the possibility of the pore coalescence. With or= "1t Soer(Ap)r e =1 (A5

the above results fow and S, the rate of change of free

energy in Eq(A6) becomes as follows from Eq.(Al1l). Consequently, Eq(Al4) be-

comes
) © 3
F=277f (r—Zoeff(Ap)r2+sln(n) n.dr . o f2
0 F=—27Tf —dr. (A16)
o n
- 277}0 endr, (ALD)  Tpe right-hand side of EqA16) is less than or equal to zero,
with equality only when the fluf=0 in r>0, which dem-
where onstrates that free enerdyis indeed nonincreasing in time.
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