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Modeling postshock evolution of large electropores
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The Smoluchowski equation~SE!, which describes the evolution of pores created by electric shocks, cannot
be applied to modeling large and long-lived pores for two reasons:~1! it does not predict pores of radius above
20 nm without also predicting membrane rupture;~2! it does not predict postshock growth of pores. This study
proposes a model in which pores are coupled by membrane tension, resulting in a nonlinear generalization of
SE. The predictions of the model are explored using examples of homogeneous~all pore radiir are equal! and
heterogeneous (0<r<r max) distributions of pores. Pores in a homogeneous population either shrink to zero or
assume a stable radius corresponding to the minimum of the bilayer energy. For a heterogeneous population,
such a stable radius does not exist. All pores, exceptr max, shrink to zero andr max grows to infinity. However,
the unbounded growth ofr max is not physical because the number of pores per cell decreases in time and the
continuum model loses validity. When the continuum formulation is replaced by the discrete one, the model
predicts the coarsening process: all pores, exceptr max, shrink to zero andr max assumes a stable radius. Thus,
the model with tension-coupled pores does not predict membrane rupture and the predicted postshock growth
of pores is consistent with experimental evidence.

DOI: 10.1103/PhysRevE.67.021915 PACS number~s!: 87.16.Dg, 87.16.Ac, 87.50.Rr, 87.54.Dt
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I. INTRODUCTION

Since late 1970s, the physical mechanism of the crea
and evolution of pores has been described by the Sm
chowski equation~SE! @1–3#,

nt2D
]

]r S Er

kT
n1nr D5S~r !. ~1!

In Eq. ~1!, the dependent variable isn(r ,t), the pore density
distribution, such that at a given timet, the number of pores
~per unit area! with radii betweenr andr 1dr is n(r ,t)dr. D
is the diffusion coefficient of the pore radius (
310214 m2 s21 @4#!, E(r ) is the pore energy,k is the Bolt-
zmann constant, andT is the absolute temperature~310 K,
body temperature!. S(r ) is a function representing creatio
and destruction of pores. It assumes that hydrophobic p
are created at a rate that depends exponentially on the sq
of the transmembrane potential~V! @5,6#. Pores with radiir
>r * ~Fig. 1, inset! convert spontaneously to long-lived hy
drophilic pores. Resealing occurs when the pore radius
creases belowr * : the pore reverts to the hydrophobic co
figuration and is destroyed by lipid fluctuations@6#. The
detailed mathematical description ofS(r ) can be found in
Ref. @7#; it is not important for the present study.

SE predicts that the pore radius, while subject to so
thermal fluctuations, will expand or contract to minimize t
pore energy~Fig. 1!. For hydrophilic pores withr>r * and in
the absence of an externally inducedV, the pore energy is:

E~r !5S C

r D 4

1g2pr 2s0pr 2. ~2!
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The three terms represent energy due to steric repulsio
lipid heads, line energy of the pore perimeter, and tension
the intact membrane@7#. In Eq. ~2!, C is the steric repulsion
coefficient~from Ref. @7#!, g is the edge energy of the por
(1.8310211 J m21 @4,6#!, ands0 is the surface tension o
the membrane (1023 J m22 @4#!. Equation~2! and its illus-
tration in Fig. 1 are based on the continuum representatio
pore energetics, which is appropriate for large pores bu
unlikely to remain valid as the size of the pore approac
the size of a lipid molecule.

The SE~1! has been used with success in theoretical st
ies of irreversible breakdown and rupture of the artific
lipid bilayers and biological cells@8,9#, as well as in the
studies of reversible electroporation with a large number
small pores@2,4#. However, it has problems with modelin
large and long-lived pores. The pore energy of Fig. 1 pred

FIG. 1. ~a! EnergyE of a pore as a function of its radius at th
transmembrane potentialV50. The radiir * and r d indicate posi-
tions of energy barriers for creation of hydrophilic pores and
rupture of the membrane, respectively;r m is the position of a local
energy minimum. Inset: full~solid line! and simplified~dashed line!
pore energies.
©2003 The American Physical Society15-1



re
o

e
le
pp
ec
e
be
wi
up
nd
s
a
n
e

e
in
re

ar
tio
ra

tin

th

r

tio
pa

ry,
se
a

ion
t
ra
l
r

ve
e

ie
co
t f
e
liv

i
,
th
ed

a
m

nal
re

rge
he

r at
d
d-

t to
cts
ed.

e

e

is

s-

s

-

J. C. NEU AND W. KRASSOWSKA PHYSICAL REVIEW E67, 021915 ~2003!
two possible scenarios for the postshock evolution of po
created by a short electric pulse. After the pulse is turned
pores with radii belowr d will shrink to the radius near the
minimum energy radiusr m'0.8 nm. Pores with radii abov
r d will expand without bounds, leading to the irreversib
breakdown and membrane rupture. Both processes ha
very fast@4,9#, so that measurements taken a few micros
onds after the pulse should reveal either the presenc
many pores with radii below 1 nm or the cell should
destroyed. However, experiments often document pores
diameters up to micrometers, which can persist without r
turing the membrane for tens of milliseconds to seco
@10,11#. Another feature not seen in the model is the po
shock growth of pores and the stabilization of their radii
20–60 nm@12#. To our knowledge, no in-depth explanatio
of this discrepancy between predictions of the SE and exp
mental results has been presented.

Our study addresses this problem by reexamining the
ergy cost of the creation and expansion of pores. The orig
formulation of the energy function~2! assumes that pores a
independent: their energy depends only on their radii@Eq.
~2!#. However, in reality pores are not independent: they
coupled through the tension of the membrane. The crea
of many pores and/or their expansion relieves the memb
tension. As seen in Eq.~2!, the decrease ins0 would increase
the energy cost of creating new pores or expanding exis
ones, potentially halting further growth of the pores.

A similar coupling between membrane tension and
pore area has been proposed before@11,13–15#. In these
studies, the analysis was limited to either one giant po
with the radius on the order of micrometers@11,15# or to a
population of pores with identical radii@13#. Neither of these
cases represents conditions occurring during electropora
mediated drug or DNA delivery experiment. The present
per fills this gap.

When electroporation is used for drug or DNA delive
the cells are exposed to an electric pulse, or a train of pul
which creates a heterogeneous population of pores with r
ranging from zero to tens of nanometers. After the pulsat
the cells are usually allowed to reseal and are not subjec
any additional manipulations. This is in contrast to seve
experimental studies@10,11,15#, which used mechanica
means to keep the membrane tension constant in orde
elucidate the mechanisms of the pore evolution. Howe
this is an artificial situation: in practical applications, th
change of pore radii following the pulsation is accompan
by the change in membrane tension. The present paper
centrates on the coupling of these two processes, so i
cuses on the behavior of pores in cells that are ‘‘left alon
after pulsation, as it is usually done in drug and gene de
ery applications.

The derivation of the theory of tension-coupled pores
presented here under two simplifying assumptions. First
order to focus on the postshock evolution of large pores,
study will ignore the influence of the externally impos
potentialV. Hence, the functionS(r ) in SE ~1! will be set
equal to zero, since no creation of pores occurs in the
sence ofV and the resealing of pores takes much longer ti
~seconds! than the time scale considered here~microseconds
02191
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to milliseconds!. The process of creating pores by an exter
potentialV will be represented by assuming an initial po
density distributionn(r ,t50).

Second, since this study considers pores with very la
radii, the steric repulsion of lipid heads is negligible and t
first term of pore energy~2!, (C/r )4, does not have to be
explicitly considered. This term creates an energy barrie
r * , which slows down resealing of pores; in the simplifie
version, this barrier will be represented by a no-flux boun
ary condition atr 50. Approximation ofr * by zero follows
from the scaling appropriate for large pores~introduced in
Sec. III A!, in which radii on the order ofr * are asymptoti-
cally equal to zero.

Under these assumptions, the SE~1! becomes

nt2D
]

]r S 2p

kT
~g2s0r !n1nr D50, ~3!

where 2p(g2s0r ) is ther derivative of the simplified pore
energy. This energy is shown as a dashed line in the inse
Fig. 1. This figure demonstrates that the simplification affe
only small radii and the energy of large pores is unchang

II. THEORY OF ELECTROPORATION WITH
TENSION-COUPLED PORES

A. Energy of a bilayer and effective surface tension

Consider a lipid bilayer of areaA, which consists of 2M
lipid molecules. The interfacial energy per molecule,m, is

m5s8a1K/a, ~4!

where s8 is the interfacial energy per area of th
hydrocarbon-water interface (2031023 J m22 @16#!, a
5A/M is the area per lipid head, andK is a constant@16#.
The two terms in Eq.~4! give rise to attractive and repulsiv
forces, which balance at the optimal area per lipid head,a0

5AK/s8. Restating Eq.~4! in terms ofa0 yields

m5s8aS 11
a0

2

a2D . ~5!

The energy of the 2M -molecule bilayer,W, is obtained as
a sum of the energies of its molecules,

W52Mm52s8AS 11
A0

2

A2D , ~6!

where A05Ma0 is the optimal area of the 2M -molecule
bilayer. ForA>A0 , ]W/]A is positive and the membrane
under tension.

Expression~6! applies to an intact membrane. The pre
ence of pores has a twofold effect: it decreasesW by reduc-
ing the area subject to interfacial tension, and it increaseW
by introducing line energy of the pore perimeter. IfAp is the
combined area of pores andLp is the combined pore perim
eter, then the bilayer energy is
5-2
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W5gLp12s8~A2Ap!S 11
A0

2

~A2Ap!2D . ~7!

The above expression is the basis for estimating the effec
surface tension of a bilayer, defined as the derivative of
ergy with respect to bilayer areaA. In Eq. ~7!, regardAp as
an independent variable andA as a fixed constant. If the por
area changes by amountdAp , the total bilayer areaA2Ap
changes by amount2dAp . Hence, the effective surface ten
sion se f f is

se f f~Ap!52
]W

]Ap
52s8S 12

A0
2

~A2Ap!2D
52s82

2s82s0

~12Ap /A!2
. ~8!

In Eq. ~8!, s0 denotes the surface tension of the intact me
brane withAp50,

s052s8S 12
A0

2

A2D . ~9!

A value of s0 used in the literature, 1 mJ m22, requires
only a small fractional change in membrane area:
2A0 /A)50.0126.

Returning to the energy of a bilayer: using definition
s0 ~9!, Eq. ~7! can be rewritten as

W5gLp12s8~A2Ap!1~2s82s0!
A2

A2Ap
. ~10!

This energy can be normalized by subtracting the energ
the intact membrane, so thatW is zero forAp50,

W5gLp2S 2s82
2s82s0

12Ap /ADAp . ~11!

B. Mean field theory of pore statistics

Each pore in the entire population ‘‘feels’’ the effectiv
surface tensionse f f in place ofs0. This observation moti-
vates a heuristic description of pore statistics: The p
population is still described by an equation like the Smo
chowski equation~3! but the constant surface tensions0 is
replaced byse f f :

nt2D
]

]r S 2p

kT
@g2se f f~Ap!r #n1nr D50. ~12!

In Eq. ~12!, the effective tensionse f f depends onAp , which
in turn depends on the pore density distributionn(r ,t):
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Ap5AE
0

`

pr 2n~r ,t !dr. ~13!

Due to the functional dependence ofse f f upon n(r ,t), Eq.
~12! is a nonlinear integro-differential equation~NIDE! for
n(r ,t).

As stated in the Introduction, there is a no-flux bounda
condition at r 50, which means that loss of pores due
resealing is negligible. From Eq.~12!, the rate of change o
total pore number is

]

]t S AE
0

`

n~r ,t !dr D 52A f~0,t !, ~14!

where

f ~r ,t ![2DS 2p

kT
@g2se f f~Ap!r #n1nr D ~15!

is the flux associated with the NIDE~12!. The no-flux
boundary condition is therefore

f ~0,t !50. ~16!

The description of pore statistics~12!, ~8! is a heuristi-
cally formulated mean field theory, analogous to other cl
sical mean field theories, such as the Debye-Hu¨ckel theory of
electrolytes@17#. In the Appendix, the thermodynamic fre
energy of a bilayer with tension-coupled pores is formula
as a functional ofn, and it is shown that this free energ
decreases in time forn(r ,t) that satisfy the NIDE~12!.

C. Special case: Homogeneous population of tension-couple
pores

A homogeneous population of pores, all with the sa
radius, is not likely to appear in practice. Nevertheless
serves as an intuitive illustration of the formula for the b
layer energy~11! and as a preliminary analysis leading to t
simplified equations governing the evolution of pores.

For a homogeneous population of pores, the pore den
distributionn(r ,t) is

n~r ,t !5Nd~r 2r 0!, ~17!

where d is the Dirac’s function,r 05r 0(t) is the radius of
pores, andN[*0

`n(r ,t)dr is pore density. The area of pore
is evaluated from Eq.~13!,

Ap5ApNr0
2 , ~18!

and the effective surface tension is computed from~8! as

se f f52s82
2s82s0

~12pNr0
2!2

. ~19!

The energy of the bilayer with the homogeneous pores
be computed from Eq.~11!. Evaluating the combined perim
eter of pores,
5-3
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FIG. 2. Homogeneous population of pores.~a! Bilayer energy per area as a function of pore radiusr 0. Values ofN are indicated by labels
~b! Diagram showing regions of growth~right arrow! and shrinkage~left arrows! of pores as a function of initial radiusr 0 and pore density
N. Nc is the critical pore density,r c is the inflection point~diamond!, r d is the position of the barrier for the spontaneous expansion of po
and r s is the stable radius. To obtain the diagram in~b!, maxima and minima of quartic curves@shown in ~a! as filled circles onN
51 mm22 plot# were computed by differentiating the right-hand side of Eq.~22!, setting it to zero, and solving the resulting third-ord
equation.
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2prn~r ,t !dr5A2pNr0 , ~20!

the bilayer energy per area takes the form

W

A
52pgNr02S 2s82

2s82s0

12pNr0
2D pNr0

2 . ~21!

Expanding 1/(12pNr0
2) in Taylor’s series, the bilayer en

ergy becomes a quartic polynomial inr 0,

W

A
'2pgNr02ps0Nr0

21~2s82s0!~pN!2r 0
4 , ~22!

in which linear and quartic terms are positive, so they ca
shrinking of pores, and the quadratic term is negative, s
causes expansion of pores.

Figure 2~a! shows the bilayer energy~22! as a function of
r 0 for several values of pore densityN. This figure suggests
two different scenarios. When the electric shock create
sufficiently large number of pores (N.Nc), W is a mono-
tonically increasing function ofr 0. Physically, it means tha
so many pores are created that not enough tension is le
the membrane to cause pore expansion. Hence, all pores
shrink to zero. When the electric shock creates a small n
ber of pores (N,Nc), W has two energy minima, at zero an
at r s , separated by an energy barrier atr d . Hence, small
pores, with initial radiusr 0,r d , will shrink to zero and large
pores, with initial radiusr 0.r d , will either expand or shrink
until they achieve radiusr s . This radius is stable: once th
pores reachr s , their size remains unchanged until some e
ternal event, such as the change in cell volume through le
age, disturbs the equilibrium. These two cases are sepa
by the ‘‘critical’’ pore density
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Nc5
2

27p

s0

~2s82s0!g2
'1.87 mm22, ~23!

for which W has a horizontal inflexion point at radius

r c5
3

2

g

s0
'27 nm. ~24!

The diagram in Fig. 2~b! summarizes the different sce
narios described above. The positions of the maximum (r d)
and the minimum (r s) of W, plotted on the (r 0 ,N) plane,
show all combinations of the initial radiusr 0 and pore den-
sity N that result in shrinkage of pores to zero~left of r d
curve or aboveNc) versus setting down to a stable radiusr s
~right of r d curve!.

The actual process of shrinkage or growth of pores i
heterogeneous population is governed by the NIDE~12!,
which can be solved numerically, but at a fairly large co
putational cost. For example, to obtain accurate numer
solutions to the SE~1!, Joshi and Schoenbach used spa
and temporal discretization steps of 5 pm and 1 ps, resp
tively @9#. Our study uses an alternative approach:
asymptotic analysis of the NIDE shows that it can be
duced to ordinary differential equations~ODEs!. The follow-
ing section presents a derivation of these ODEs for an a
trary population of pores and afterwards we will finish t
example of a homogeneous pore population.

III. EVOLUTION OF PORES

A. Approximate solution of the mean field equation„12…

The first step in the analysis is converting NIDE~12! to
dimensionless form using the following system of units:
5-4



Variable: r t n se f f W/A

Unit: r c
3 kT Nc s0 gNcr c
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4p Ds0 r c

Value: 27 nm 20.4ms 69.2mm-3 1023 J m22 212kTmm22. ~25!
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The dimensionless form of NIDE~12! is

nt2
]

]r F S 12
3

2
se f f~Ap!r Dn1«nr G50, ~26!

whereAp and se f f are dimensionless counterparts of qua
tities defined by Eq.~13! and Eq.~8!, respectively. The pa
rameter« appearing in Eq.~26! is defined as

«5
kT

3p

s0

g2
. ~27!

For typical values ofs0 , g, and at the body temperature,«
has a small value of approximately 0.0015. This indica
that the diffusion term in Eq.~26! is at least two orders o
magnitude smaller than others and can be neglected. He
NIDE ~26! reduces to a first-order equation,

nt2
]

]r F S 12
3

2
se f f~Ap!r DnG50. ~28!

This equation can be further transformed using
method of characteristics@18#. This procedure leads to ODE
governing the time evolution of pore radii and pore dens
distribution. Specifically, the radiusr i of the i th pore in the
whole population of pores evolves according to the ODE

dri

dt
52S 12

3

2
se f f~Ap!r i D . ~29!

The value of the pore density distribution, which is seen
time t and radiusr i , is denoted byni(t)5n(r i(t),t) and
evolves according to the ODE:

dni

dt
52

3

2
se f f~Ap!ni . ~30!

Returning to dimensional variables, Eqs.~29! and ~30! take
the form

dri

dt
52

2pD

kT
@g2se f f~Ap!r i #, ~31!

dni

dt
52

2pD

kT
se f f~Ap!ni , ~32!

wherese f f is given by Eq.~8!. Note thatse f f is a function of
time through its dependence onAp and, consequently, on
n(r ,t). This dependence can be incorporated in calculati
as follows. Let us assume that known initial pore dens
distribution n(r ,0) is specified on a finite intervalr min<r
02191
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<rmax. This interval is divided intoK subintervals and
n(r ,0) represented by pairsr i(0),ni(0), i 51,2, . . . ,K11.
Thus,Ap at t50 is evaluated using the trapezoidal rule@19#,
and se f f at t50 is computed from Eq.~8!. Now, r i and ni
are advanced in time by solvingK11 pairs of ODEs, Eqs.
~31! and~32!. Using newr i andni , se f f can be updated and
the process repeated in each time step.

Solutions to Eqs.~31! and ~32! can be obtained using
standard numerical techniques. This paper uses an imp
midpoint method with Newton-Ralphson iteration in ea
time step@19#. The time step needed for a convergent a
accurate solution is only 0.1ms, which is five orders of mag
nitude larger than the time step used for the direct solution
the Smoluchowski equation in@9#.

B. Special case: Homogeneous population of tension-coupled
pores

Applying the results of Sec. III A to a homogeneou
population of pores,n(r ,t)5Nd(r 2r 0), gives an ODE gov-
erning the time evolution of the radius of all poresr 0(t),

dr0

dt
52

2pD

kT
@g2se f f~r 0 ,N!r 0#, ~33!

wherese f f(r 0 ,N) is given by Eq.~19!.
Figure 3 illustrates the time evolution of pores for thr

values of pore densityN and three initial radii. In agreemen
with predictions of the bilayer energy of Fig. 2~a! and the
diagram of Fig. 2~b!, N.Nc always results in pores shrink
ing to zero, whileN,Nc may lead either to shrinkage to zer

FIG. 3. Homogeneous population of pores, time evolution
pore radiusr 0(t). Solid, dashed, and dotted lines correspond
three pore densities~legend!: N51 and 1.3mm22 ~belowNc), and
3 mm22 ~aboveNc). Each pore density was tested for three init
radii: r 0(0)5 15 nm ~below r c), and 30 and 70 nm~abover c).
5-5
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FIG. 4. Heterogeneous population of pores, time evolution of a uniform distribution with initial radii 0<r (0)<25 nm and pore density
N51 mm22. ~a! Pore density distributionn(r ,t) plotted as a function of radiusr at six instants of time,t50,10, . . . ,50ms. ~b! Time
evolution of 25 representative radii,r i(0)51,2, . . . ,25 nm.~c! The density of pores with nonzero radiiNr .0 ~solid line! and the effective
membrane tensionse f f ~dashed line! plotted as a function of time.~d! Time evolution of six large radii,r i(0)524.9,24.92, . . . ,25 nm,
followed for longer time interval, 0<t<6 ms.
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or to stabilization of pores at radiusr s . The time scale of this
process is on the order of microseconds, as is the time
used for scaling~25!.

IV. EXAMPLE: UNIFORM DISTRIBUTION OF PORES

A. Continuum formulation

A homogeneous population of pores, analyzed abo
may not appear in real-life situations. Hence, the next
ample recognizes that the shock creates a heterogen
population of pores, with radii ranging from zero to som
value r max. For simplicity, the pore density distribution a
time t50 is assumed uniform,

n~r ,0!5H N/r max, 0<r<r max

0, r .r max, ~34!

whereN is the pore density. This distribution is represent
by pairsr i(0),ni(0), i 51,2, . . . ,K11, whereK11 is cho-
sen so that att50, adjacent radii are separated by at least
nm. The time evolution of pairsr i(t),ni(t) is computed from
ODEs ~31! ~32!, with Ap evaluated numerically from Eq
~13! andse f f from Eq. ~8!.
02191
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Figure 4 illustrates a typical time evolution of a unifor
distribution of pores. This example assumesr max525 nm
and N51 mm22. As seen in Fig. 4~a!, n(r ,t) remains uni-
form in r at all times. This is a consequence of advecti
velocity in NIDE ~12! being a linear function ofr. With the
linear velocity, the distribution will change its range an
magnitude, but it will retain its original shape. Figure 4~b!
shows the evolution of 25 representative pores. Pores w
r i(0),20 nm shrink from the very onset of the simulatio
As the radii of these pores become zero,1 the density of pores
with nonzero radius,Nr .0, steadily decreases@Fig. 4~c!,
solid line# and less pores are available to relieve membr
tension. However, the growth of larger pores compensa
for the decrease inNr .0 and se f f decreases@Fig. 4~c!,
dashed line#. This is an example of a general phenomen
the ‘‘coarsening’’ @20#, which has been observed in oth
physical systems such as solid crystals nucleating from
uid solution.

The long-time behavior of the uniform pore distribution
shown in Fig. 4~d!, which follows evolution of six very large

1More precisely, pore radii becomeO(«), so that the no-flux
boundary condition atr 50 is preserved~see Sec. V B!.
5-6
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FIG. 5. ~a! Bilayer energy per area plotted as a function of the maximum radiusr max of the uniform distribution. Pore densityN
51 mm22. ~b! Bilayer energy per area plotted as a function of the maximum radiusr max and the pore densityN. The line shows the
trajectoryr max(t) that starts at 25 nm.
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pores, with initial radii from 24.9 to 25 nm. This figur
shows that all pores with radiir ,r max eventually shrink to
zero. This result can be intuitively explained as follows. B
cause smaller pores keep shrinking to zero and the distr
tion must remain uniform, coarsening continues: even lar
pores, which initially grow, must eventually turn around a
start shrinking. This is the ultimate fate of all pores exce
r max, which must continue to grow, in order to prevent t
increase in membrane tension. Asymptotically, the growth
r max becomes linear, with the slopedrmax/dt→pgD/kT as
t→`.

The scenario illustrated in Fig. 4 is qualitatively differe
from the behavior of the homogeneous pore population~Fig.
3!. The most important difference is the absence of sta
pores with radii of tens of nanometers. Based on the bila
energy plotted as a function ofr max @Fig. 5~a!#, one would
expectr max to reach the stable radius corresponding to
energy minimum. However, one must take into account t
as r max moves towards this minimum-energy radius, t
smallest pores shrink to zero@Fig. 4~b!# and the pore density
N effectively changes@Fig. 4~c!#. Hence, in the case of
heterogeneous pore distribution, the bilayer energyW must
be considered a functions of bothr max and N. Figure 5~b!
shows this function as a surface in the three-dimensio
space: note that the energy minimum att50, shown in Fig.
5~a!, is a part of a ‘‘valley’’ that becomes deeper asN→0
and r max→`. The trajectory overlaid on this surface show
that r max(t) eventually follows the bottom of this valley
minimizing the bilayer energy.

Once one accepts the correctness of the results show
Fig. 4, the implication is that the model with tension-coupl
pores cannot predict large and stable pores. Contrary to
results for a homogeneous pore population~Fig. 3!, in a
more general case of a heterogeneous pore population
relief of membrane tension by pores does not prevent
largest pore from unbounded growth and rupturing the me
brane.

This conclusion is too hasty because it does not take
account the limitations of the continuum approximation. L
us consider a cell of radius 10mm. In the example shown in
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Fig. 4, the initial pore density,N51 mm22, corresponds to
1256 pores per cell. However, for the final time shown
Fig. 4~d!, 6 ms,N50.731023 mm22, which corresponds to
only 0.89 pores. For a fractional number of pores per c
the behavior of the continuum model no longer reflects re
ity. Hence, the following section will reexamine the sam
problem using a discrete formulation.

B. Discrete formulation

Let us consider a heterogeneous population of pores w
the initial pore densityN. For a spherical cell of radiusR, the
number of pores is

K5AcellN54pR2N. ~35!

This example assumes that att50 pore radii are distributed
uniformly between zero andr max,

r i5 ir max/K, i 51,2, . . . ,K. ~36!

The time evolution of each radiusr i is governed by the ODE
~31!. Effective tensionse f f is computed from Eq.~8! and the
bilayer energyW is computed from Eq.~11!. In these expres-
sions,Ap and Lp are computed by summing areas and c
cumferences of all pores,

Ap5(
i 51

K

pr i
2 , Lp5(

i 51

K

2pr i , ~37!

andA is the cell areaAcell computed as in Eq.~35!.
Figure 6 is the counterpart of Fig. 4~d! for the discrete

model. The pore densityN51 mm22, and the initial radii of
the six pores, 24.9 to 25 nm, are the same as shown in
4~d!. At t50, a cell of radiusR510 mm is assumed to have
1256 uniformly distributed pores; the figure shows the tim
evolution of the six largest pores, 1251–1256. Five of th
pores, with radiir ,r max, shrink to zero; smaller pores~not
shown! shrink even faster, just as they did in the continuu
model. However, the largest pore,r max, grows to a stable
radiusr s . Note the time scale of the process: it takes alm
5-7
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4.5 ms forr max to reach its stable radius. Also note the lar
final size ofr s , 2.234mm, which is over 20% of cell radius
The same value is obtained by computing from Eq.~11! the
position of the bilayer energy minimum. Note that atr s , the
tension of the membrane is not zero:se f f58.1
31026 J m22, or 0.81% ofs0. This smallse f f is needed to
balance the force exerted by line energy.

The reason why the largest pore in the discrete mo
settles at a stable radius is illustrated in Fig. 7. This fig
shows the bilayer energy as a function ofr max andN @con-
tinuum model, Fig. 7~a!# and r max and K @discrete model,
Fig. 7~b!#. These two surfaces are drawn for the case w
there are very few pores per cell:K varies between 1 and 12
In the continuum case,N can assume any real number, so t
energy surface is smooth. In the discrete case,K assumes
only integer values, so the energy surface decrease
clearly visible steps. There also is a natural termination
the discrete energy surface atK51. WhenK decreases to

FIG. 6. Time evolution of a uniform distribution of pores in
discrete model. At timet50, there are 1256 pores with radii
,r i(0)<25 nm. Shown here is the time evolution of the six larg
pores,r i(0)524.9,24.92, . . . ,25 nm~solid lines!; the same as in
Fig. 4~d!. The heavy line shows the evolution ofr max of the discrete
model; the dashed line shows the evolution ofr max of the con-
tinuum model@from Fig. 4~d!#.
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zero, the last pore disappears and the energy sharply
creases to a value corresponding to that of an intact m
brane. There is no such natural termination in a continu
model, sor max can increase without bounds. However, t
increase ofr max predicted by the continuum model has n
physical significance.

V. DISCUSSION

A. Difference between the Smoluchowski equation„3…
and the mean field equation„12…

This study proposes a model in which the behaviors
individual pores are not independent: the pores are cou
by the tension of the membrane. This model can be con
ered a nonlinear extension of the Smoluchowski equa
used in the literature to describe the behavior of uncoup
pores@1–3#. The purpose of this part of the discussion is
preempt misunderstandings invited by formal resemblanc
NIDE ~12! to SE ~3!.

First, consider the ensemble of uncoupled pores with
single pore energy

E~r !52pgr 2ps0r 2. ~38!

The internal energy of this system~‘‘bilayer energy’’! is the
combined energy of all pores:

W05AE
0

`

E~r !ndr5gLp2s0Ap . ~39!

Now consider the system of tension-coupled pores. Its in
nal energy is equal to the bilayer energyW defined by Eq.
~11!. Note thatW in Eq. ~11! is not equal toW0 in Eq. ~39!
with s0 replaced byse f f because the expression in parenth
ses is not equal tose f f defined by Eq.~8!: in Eq. ~8!, term
(12Ap /A) is squared. This difference arises from the fa
that as pores are successively created, their energy cos

t

to a small

n in Fig.
FIG. 7. Bilayer energy per area of a continuum and a discrete model. Shown are parts of the energy surface that correspond
number of pores per cell.~a! Continuum model: the energy is plotted as a function of the maximum radiusr max and the pore densityN. ~b!
Discrete model: the energy is plotted as a function of the maximum radiusr max and the number of poresK. Lines indicate trajectoriesr max(t)
that start at 25 nm, arrows indicate the direction of movement. Note the opposite orientation of these plots from the surface show
5~b!.
5-8
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pends on previously created pores. Thus, in a system
tension-coupled pores, the internal energyW is not the sum
of individual pore energies.

B. Simplifying assumptions and future work

The model presented here contains several simplifying
sumptions. First, the model simplifies the shape of the p
energy function~Fig. 1, inset! by neglecting the contribution
of steric repulsion. Consequently, in the model pores sh
to zero radius, while in reality they accumulate at the rad
of '0.8 nm, which corresponds to the local energy mi
mum. This simplification is of no consequence; the sa
qualitative results will be obtained if the bilayer energy i
cludes the steric repulsion term. The presence of 0.8
radius pores has only a small effect on membrane tension
the quantitative effect on the result is expected to be ne
gible.

Likewise, simplifying NIDE~12! to ODEs for the purpose
of obtaining numerical solution is of no practical cons
quence. This simplification neglects the thermally induc
diffusion of pore radii, which would result in a slight mod
fication of the pore density functionn(r ,t). The length scale
of the diffusion,LD}ADTD, whereD is the diffusion coef-
ficient andTD is the relevant time scale@21#. Using the time
unit from scaling table~25! as TD , LD'1 nm, which is
much smaller than 27 nm, the length scale from table~25!.
Hence, the diffusion is expected to introduce only a sm
quantitative change forr @1 nm. For example, in the uni
form distribution of Fig. 4~a!, sharp edge atr max would be
blurred.

However, neglecting diffusion creates an appearance
inconsistency in the model: the number of finite-sizer
.0) pores decreasing with time@Fig. 4~c!# conflicts with the
no-flux boundary condition~16! at r 50, which ensures the
conservation of pores. This is an artifact of the reduc
NIDE ~28!, which is not sufficient to resolve a bounda
layer of thickness« at r 50, where diffusion matters. Give
a solutionn(r ,t) of the reduced equation~28!, a uniformly
valid approximation to a solution of the full NIDE~26! is
given by

nf ull'
N0~ t !

«
e2r /«1n~r ,t !. ~40!

Here,N0(t) is a function of time, independent ofr. The first
term on the right-hand side dominates forr of magnitude«,
and represents a high density of pores whose radii have
lapsed to magnitude«. Based on Eq.~40!, the approximation
to the total pore density is

N'N01Nr .0 , ~41!

whereNr .0[*0
`n(r ,t)dr can be thought of as the density

pores with r @« and N0 as the density of pores withr
5O(«). Given Nr .0 from a solution of reduced equatio
~28!, N05N2Nr .0. The actual structure of the bounda
layer at r 50 is not important, since NIDE~26! is already
based on a simplified pore energy valid only for pores s
nificantly larger than 1 nm and, moreover, the continu
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representation of pore energy has limited validity for sm
pores. The main point is that there is a large concentratio
pores that have collapsed to a radiusr 5O(«) and the pore
conservation is upheld. However, as mentioned above, p
that small have negligible influence on membrane tens
and can be ignored.

The coarsening process studied here is driven by chan
in membrane tension induced by replacing the lipid bilay
by water-filled pores. An alternative mechanism of the coa
ening process is the decrease in line energy caused by
coalescence of the adjacent pores@22#. This mechanism is
not included in the present model because of the relativ
low pore densities considered here: the initialN51 mm2

corresponds to the interpore distance of approxima
1 mm, which is much larger than the initial pore radii, 0–2
nm. Since the number of pores decreases with time~Fig. 4!,
the coalescence of adjacent pores would be rare and w
have only a small effect on the results.

Neglecting the effect of the transmembrane potentialV is
of more consequence. The examples presented here as
arbitrary and idealized initial distributions of pore dens
n(r ,0) and concentrate on the postshock evolution. This w
done to maintain the clarity of presentation. The proces
related to potentialV, such as charging the membrane by
external electric shock and the creation of pores, proc
with similar time constants as the evolution of pore rad
With all these processes happening at the same time,
problem becomes intrinsically ‘‘messy.’’ Nevertheless, t
problem in which creation and evolution of pores a
coupled toV is of practical interest and will be addressed
future work.

Another unphysiological assumption is that the volume
the cell remains constant. In reality, creation of pores of
size investigated here leads to the leakage of cellular con
This process aids in the decrease of membrane tension,
sibly modifying later stages of pore evolution. Thus, anoth
extension of the present model should be the addition
changes in cell volume. The coupling of the pore evoluti
with the change of cell volume has been proposed bef
although in the case of only one pore present@11,15#.

C. Comparison with experimental results

Numerical simulations of the original Smoluchows
equation~1! reveal that pores increase their radius very ra
idly when the electric shock is present. As soon as the sh
is turned off, pores either shrink to zero or, if pores with ra
above 20 nm have been created, they expand with
bounds, leading to the rupture of the membrane@4,9#. The
predicted time scale of these processes is on the order
fraction of a microsecond. Postshock growth of pores to ra
on the order of tens of nanometers, lasting for millisecon
and followed by their shrinkage and resealing, has not b
seen in simulations.

Thus, the original SE cannot explain the study of Cha
and Reese, who used rapid-freezing electron microscop
visualize the evolution of pores in red blood cells@12#. The
resolution of the method allowed the pores to be first s
approximately 3 ms after the shock, when their radii we
5-9
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10–20 nm. The pores continued to grow, and their radii s
bilized 40 ms after the shock at 20–60 nm. The resealing
pores started at 5 s.

These experimental results have several common feat
with the predictions of our model of tension-coupled por
The model predicts the postshock growth of pores, the t
scale is on the order of milliseconds, the pore radii are t
of nanometers and larger, and the membrane does not ru
~Fig. 6!. However, the simplifications of our model introduc
several quantitative differences. First, the pore radii stabi
after 4 ms in the model~Fig. 6!, and after 40 ms in the
experiment. This difference is most likely due to model p
rameters corresponding roughly to planar lipid bilayers,
to red blood cells. It is also possible that the later growth
pores was caused by the swelling of cells, which is not r
resented in the model. Second, Chang and Reese did no
a coarsening process leading to the presence of only
pore. This difference can be explained by the existence
network of cytoskeletal proteins in red blood cells. The te
sion coupling between pores would be limited only to po
in the same opening of the network, so the coarsening
cess would lead to one pore per opening, instead of one
per cell. Finally, the largest pore observed in the mod
2.234mm, is larger than the pores in the experiment, 60 n
This difference is easily explained: since many pores cont
ute to the relieving membrane tension, the radii of the in
vidual pores can be smaller. Smaller radii were predicted
the model for the homogeneous distribution of pores~Figs. 2
and 3!.

To see that the coarsening process indeed leads to
pore, one needs to examine experiments performed on
some vesicles, which do not have cytoskeletal netwo
Such liposomes, 25–50mm in diameter, were used in
study of Zhelev and Needham@10#. Pores were induced by
150 ms, 0.63–1.26 kV cm21 electric shock. Based on
study of Hibinoet al. @23#, such a shock should create a lar
number of pores, concentrated in the parts of the liposo
membrane facing the electrodes. Yet, when the liposome
examined several milliseconds after the shock, only o
pore, with the radius of approximately 1mm, was present
Hence, this experiment indicates that the coarsening pro
predicted by the model~Fig. 6! may be taking place.

Another confirmation comes from the experiment of Sa
dre et al., performed on stretched liposome vesicles@11#. In
this study, the viscosity of the solvent was increased in or
to slow down the rate of leakage from the cell. Hence, in
slow leakage limit, this experiment approximates the c
stant cell volume situation assumed by our model. Ima
collected several times per second revealed the presen
only one pore. Sandreet al. observed the stabilization of thi
pore at a radius up to 10mm; afterwards, the leakag
through the pore took over and led to the decrease of
volume, shrinkage of the pore, and its resealing. These c
parisons between theory and experiments give us a reas
believe that, despite its simplifying assumption, the mo
with tension-coupled pores can be useful in theoretical s
ies of the postshock evolution of pores.
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APPENDIX: MEAN FIELD THEORY AND FREE ENERGY
OF TENSION-COUPLED PORES

The purpose of this appendix is to make a connect
between the energetics of the system of tension-coup
pores and the mean field NIDE~12!. In particular, it will be
shown that the free energy

F5W2TS, ~A1!

with the internal energyW as in Eq.~7!, is nonincreasing in
time for n(r ,t) that satisfy the NIDE~12!. The association of
a free energy with the kinetics of a mean field theory w
first worked out by Bonillaet al. @24#.

The argument uses the dimensionless quantities,
pressed in units from the scaling table~25!. Also, in this
appendix,F, W, and S represent energies and entropy p
area, rather than those of the entire bilayer. Hence, the
mensionless free energy per area is

F5W2«S, ~A2!

whereS is the dimensionless entropy per area,

S522pE
0

`

n ln~n!dr. ~A3!

The small parameter«, defined in Eq.~27!, is proportional to
temperature, so Eq.~A2! amounts to the standard definitio
of free energy in thermodynamics@25#. The internal energy
W is evaluated as follows. From Eq.~7!, the bilayer energy
per area can be written as

W5g
Lp

A
12s8

A2Ap

A S 11
A0

2

~A2Ap!2D . ~A4!

Hence, the dimensionless internal energy is

W5E
0

`

2prndr1
1

gNcr cA
F2s8~A2Ap!

3S 11
A0

2

~A2Ap!2D G , ~A5!

where dimensionlessA, A0, andAp are measured in units o
r c

2 .
Now compute the time rate of change ofF,

Ḟ5Ẇ2«Ṡ, ~A6!

whereẆ and Ṡ are obtained by differentiatingW and S in
~A5! and ~A3!, respectively. First compute
5-10
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Ẇ5E
0

`

2prntdr1
1

gNcr cA

]

]Ap
F2s8~A2Ap!

3S 11
A0

2

~A2Ap!2D G]Ap

]t

52pE
0

`F r 2
3

4
se f f~Ap!r 2Gntdr, ~A7!

where the derivative]/]Ap of the expression in brackets
recognized as equal to dimensionlessse f f times (2s0).
Next, from Eq.~A3!,

Ṡ522pE
0

`

@ ln~n!11#ntdr522pE
0

`

ln~n!ntdr.

~A8!

The last equality in Eq.~A8! is due to effective conservatio
of pores,

d

dtE0

`

ndr50, ~A9!

which ignores the possibility of the pore coalescence. W
the above results forẆ and Ṡ, the rate of change of free
energy in Eq.~A6! becomes

Ḟ52pE
0

`S r 2
3

4
se f f~Ap!r 21« ln~n! Dntdr

522pE
0

`

wntdr, ~A10!

where
n

en

h-

-
tr

02191
h

w[2r 1
3

4
se f f~Ap!r 22« ln~n!. ~A11!

From the mean field equation~26!, nt can be expressed in
terms of flux,

nt52 f r , ~A12!

where

f 52S 12
3

2
se f f~Ap!r Dn2«nr in r>0 ~A13!

is the dimensionless version of flux~15!. Substituting Eq.
~A12! into Eq. ~A10! and performing integration by parts

Ḟ52pE
0

`

w f rdr52p@w f #0
`22pE

0

`

w r f dr. ~A14!

Using no-flux boundary condition~16! and assuming thatf
→0 asr→`, the boundary terms in Eq.~A14! disappear. In
the integral,

w r5211
3

2
se f f~Ap!r 2«

nr

n
5

f

n
, ~A15!

as follows from Eq.~A11!. Consequently, Eq.~A14! be-
comes

Ḟ522pE
0

` f 2

n
dr. ~A16!

The right-hand side of Eq.~A16! is less than or equal to zero
with equality only when the fluxf [0 in r .0, which dem-
onstrates that free energyF is indeed nonincreasing in time
atl.
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